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1. Introduction

In the calculation of electromagnetic observables, it is essential to use interaction
currents which are consistent with gauge invariance. Feynman showed a number of years
ago,’ in the context of QED, that this required coupling the photon to all charged parti-
cles in all possible places in every diagramn being calculated. In effective theories, where
hadronic structure is treated phenomenologically through the introduction of strong form
[actors al meson-nucleon or meson-meson vertices, one does not have a theory for this
hadronic structure, and Feynman’s program cannot be carried out. This has lead o a
popular misconception that either (i) a full theory of hadronic structure is necessary in
order to have a gauge invariant current, or (ii) in the absence of such a theory, a single
universal form factor must be used to describe the electromagnetic structure of the con-
stituent hadrons.? This latter view is reinforced by the usual non-relativistic derivation
of the interaction current from microscopic current conservation, where the nucleon form
{actors seem to play a special role through their connection with the one body charge
density. Using only one form factor is, however, clearly in conflict with the physical idea
that the total current is built up from one body (i.e. one nucleon) contributions, which
should lye described by nucleon form factors, meson-in-flight contributions, which should
use eson form factors, and contact (or “pair”) terms which might require still another
form [actor. Using the nucleon charge form factors to describe all of these processes is not
only in conflict with our intuition, but has also lead to a debate over whether to use Gg

or J7 for these interaction currents.

Recently, in the context of relativistic meson theories, Gross and Riska® showed how
to construct phenomenological interaction currents which (i) conserve current, even when
phenomenological strong form factors are used at the meson-nucleon vertices, and (ii) place
no restriction on the choice of phenomenological electromagnetic form {actors used at each
electromagnetic vertex, so that the appropriate (different) form factors may be used for

nucleous, mesouns, and contact terms (such as the NNmy term which arrises when ~;v#




coupling is used for the pion). In this paper we apply their method to non-relativistic prob-
lems, and sliow how to construct non-relativistic interaction currents without constraints
on the elementary electromagnetic form factors. The discussion gives insight into the role
of the local non-relativistic current conservation relation, and shows where the original
argunent went astray. Our result allows us to settle the debate over the use of Gg vs Fy,
and has significant numerical consequences for tlie present generation of three-body form

factor calculations.

The method for taking the non-relativistic limit of a relativistic calculation is an
integral part of the development, and in order to minimize confusion, the method will be
described now. Owur general philosophy is that the most appropriate frame in which to
compare relativistic and non-relativistic calculations of electromagnetic form factors is the
(generalized) Breit frame. If g is the four-mowmentum carried by the photon, this frame
is cefined by the conditions go = 0 and ¢* = —q?, so that the photon matrix elements
are independent of time and no energy is transferred to the target. The electromagnetic
interaction in this frame is therefore static, consistent with the non-relativistic idea that
the form factors describe how the bound state responds to static electric and magnetic field
distributions, leading directly to the familiar interpretation of the form factors as charge
and magnetic moment distributions.? Furthermore, in (non-covariant) time ordered pertur-
bation theory, only the three-momentum of intermediate states is conserved, and therefore
only the three-momentum transferred to the constituents is equal to the three-momentum
transferred to the entire target. In covariant calculations, the full four-momentum of in-
termediate states is conserved, giving the result that the four momentum transferred to
the (virtual, off-shell) counstituents is always the same as the four-momeutum transferred
to the entire target. If a non-relativistic calculation is carried out in an arbitrary {rame,
this difference can lead to difficulty in deciding how to define the momentun transferred
to the constituents,® and the Breit frame has the unique property that three-momentum
conservation is sufficient to fix the actual photon momentum transfer correctly, permit-

ting us to recover the (correct) relativistic result, eliminating ambiguities, and {acilitating



the comparison of relativistic and non-relativistic approaches. Finally, one should not be
concerned that this procedure is frame dependent; because relativistic and nonrelativistic
matrix elements satisfy different transformation laws a consistent comparison in all frames

is impossible. With these remarks, we turn now to the main body of the paper.

2. The Single Nucleon Current

To set the stage, the role that the single nucleon current plays in the conservation
of current js first reviewed briefly. The matrix element of the usual relativistic current

operator ol the nucleon is

m m e
(k' | 75(q) [ k) = [m E(Tc’)]
iG“uVQU

a(k)e, [Fl(qz,rs)vuﬂ(q%rs) e R

RO, =3 +1) (1)
3 3 1 3 1 3

Fy(0,7°) = wlr )=np-2—(‘r +1)+nn§(‘r -1) , (1c)

E(k) = (m? +k2)'* | (1d)

where k and k' are the four-momenta of the (virtual) initial and final nucleon, respectively,
and ¢ = k' — k is the four-momentum which the virtual photon transfers to the nucleon.
The form factor F3(¢?, 7%) is normalized to the anomalous magnetic moments of the proton
%y and of the neutron x,. The nucleon spinors u(k,A) = u{k) describe physical on-shell
nucleons with energy E(k), momentum k, and spin projection A (which will normally be
supressec). In applications to bound state problems, the nucleous are off-shell, so that their
energies kg and k) are not equal to E(k) and E(k') and the appearance of on-shell spinors

is a consequence of the approximation in which a propagating virtual nucleon is replaced




by its positive energy part (see the discussion following Eq. (13) below). This means that
qo is not equal to E(k') — E(k), a reflection of the fact that, in a formalism where the
(virtual) nuclear constituents are on-mass shell, the three-momentum is conserved, but the
energy is not . {If we want to conserve energy, the constituents will be off-mass shell, as
they are in Feynman diagrams. The connection between covariant Feynman diagrams and

time ordered diagrams is at the heart of our discussion.]

Taking the non-relativistic limit of the above matrix element (in the Breit frame)

gives

Loip o q* ic-(qxk)
;(UN ) = Ft — (Fy + 2F) SmZ ~  dm? ) (2a)
1,y o (kK)o (ax o)
a<|‘7Nl>—Fl——2_m—_t(Fl+F2)—_2;_ ; (2b)
where terms of order m ™% have been discarded. Hence
L k'? — k?)
) +i — F 2 3 (
qa' ({1} = epFi(g" 7°) 5 —= (3a)
= [Ko, PNy (25 7)] (3b)
where & is the kinetic energy operator and py(g,7) = <| iN I) is the nucleon charge
operator, which in lowest order are
k2
Kg = % (4(1.)
pNo(a7) = ep Fy (g%, 7°) (4b)



Eq. {3D) looks like part of the non-relativistic continuity equation, and the occurrence of
Fy (¢*,73) in this equation has lead to much speculation about whether Fy or Gg should
be used in the interaction current. The fact that calculated results are sensitive to this
difference lias been taken to be evidence that relativistic effects (the difference between F

and Gg is of relativistic order) are important.

For comparison, consider the modified one-body curreni proposed in Ref. 3, which

will be labeled by the subscript N' to distinguish it from (1),

[Note that this current is identical to (1) if the nucleons are on-shell, and differs only when
at least one nucleon is off shell.] This current satisfies the Ward-Takahashi (WT) identity®
{or a structureless nucleon. [In non-relativistic calculations using the Schrodinger equation,
il is most consistent to use the identity for a structureless nucleon, but if nucleon structure
is explicitly included in any calculation, the current {5) can be suitably modified, and the
discussion generalized.] With our notation and normalization, the matrix elements of this

identity are:

(k' )e, Fy (0,7%) [STH (k) — S (A")] ulk) (6)

where



is the inverse of the free nucleon propagator. In the Breit frame, this equation becomes

™ ™m 1/2
o (15w 1) = [Wm] a(K)e, Fy (0,7°) [f— #']u(k) (8a)
- [B(K) = B(K)]pns (9,7) = [ o (0,7)] (85)

where the Dirac equation was used in going from (8a) to (8b), and the ezact x and p are

w=FE(k)—m (9a)
m m 1/2
s (@) = | | e (07) K (i) (95)

Note that pns(q,7) is the exact charge density of a point particle, which is the reason
for the subscript NS (for “no structure”). It is not equal to pn/(0,7) = (| 53 (0,7) |)
(hecause, in the latter, the arguments of the spinors k and k' are equal). To lowest order

in m~1, Eq. (8) reduces to

eppl((]’,,-fi)_(_l.c,z__l,{_z.)_

qi ( 2m

ine i) = (10a)

= [’CDMPNU (O)T)] . (10b)

Note that neither the exact relation (8) nor the lowest order relation (10) contain any
reference to the internal structure of the nucleon. In fact, Eq. (10) no longer even suggests
local current conservation, because in that relation the total charge apprears on the RHS

instead of the charge density, as in Eq. (3).

The choice of one body current operator therefore sets the stage for how we think
about the problem of current conservation. The choice of Eq. (1) leads to Eq. (3), in

which the divergence of the one body current is equal to the commutiator of the kinetic




' elnergy operé,tor with the local charge density of a nucleon with structure. Becau;e the
internal structure of the nucleon enters into this relation, we will refer to such statements
as microscopic relations. On the other hand, the choice (5) for the one body current
operator leads to a statement in which the divergence of the one body current is equal
to the commutator of the kinetic energy operator with the local charge density of a point
nucleon, given in Eq. (9b), and denoted by pns(gq, 7). This density differs from the total

charge of the nucleon [which is pn(0,7) = pn'(0,7)] only by terms of order m =2

compared
to the leading term, and hence the difference between this charge density and the total
charge will not be apparant in lowest order non-relativistic calculations. However, because

(9b) is the exact charge density of a point charge, relations involving this charge density

will e referred to as macroscopic relations,

In this language, we see that the choice of one body operator (5) has shifted the
requirement of current conservation from a microscopic form (3) to a macroscopic form
(8). One begins to see how it will be possible with this macroscopic form to avoid many of
tlie issues raised by the microscopic form. In particular, F1(0,73) = Gg(0,7?%), so the issue
of Fy versus Gg does not even arise when using the macréscopic relations. Furthermore,
since {8) is an exact relativistic relation, it may clearly be expanded in powers of m™2

permitting relativistic effects to be treated systematically and easily.

Because the commutators (3) and (8) both involve the kinetic energy operators only,
the proof of current conservation cannot be carried through. Other terms {interaction
currents) are needed to insure current conservation in the general case. However, before
discussing these additional currents, we return to the beginning, and show how the one

body terms can be obtained from a fully relativistic treatment.

3. Non-relativistic Limit of One Body Currents

The five relativistic diagrams shown in Fig. 1 are a convenient starting point for

our development. In Ref. 3 it was shown, in the context of the Bethe-Salpeter (BS)




theory, that these five diagramms, taken together, conserve current when the two nucleons
interact through the exchange of single bosons (the ladder approximation) even though the
uucleons are off-shell and the initial and final state wave functions include interactions to
all orders in the meson-nucleon coupling constant. The diagrams (a) and (b) lead to one
body currents which contain the matrix elements (5). The interaction currents for a two
body system are given completely by the three diagrams (c)-(e) shown in Fig. 1. These
five diagrams will conserve current provided the form (5) is used for the one body current,
and the other currents are constructed from the elementary currents given in Eqs. (33)
and (34) below and in the Appendix. The general proof that these diagrams, defined in

this way, lead to a conserved current, is given in Ref. 3, and will not be given here.

In this section we take the non-relativistic limit of the one body diagrams (e) and
(b). The goal is lo show in detail how the non-relativistic limit is to be taken, and how

the off-shell nucleons are to be handled.

The two one body diagrams can be written

(o)) = [ [ St

Tp(kl,, K)S(R)S(kL)TM# (ky'ky' kiks) S(k1)S(ka)Ti(krz, K) (1)
where

TO (hy'hy' k) = ~i(2m)* [ (@) 57 (KS) 84k} — ko)

+ jhe(q)e STHRY) 84 (kY ~ k1) ] (12)

and k; and ky are the momenta of the two incomming nucleons, &) and &, the momenta of

U hucleon, JUH is

the two outgoing nucleons (see Fig. 1e), S; is the propagator (7) of the :
the relativistic one-nucleon interaction current, and I';(k12, ') is the Bethe-Salpeter vertex
function describing the coupling of the initial state (1) to two off-shell nucleons with relative

momentum ky2 and total momentum /i, where, for both primed and unprimed momenta,




I =k +ky and kyp = %(kl — k3). Note that the initial and final states need not be the
same; the formalism is applicable to electrodisintegration processes as well as form factors
(although numerical examples will be given only for form factors in this paper). Note that
the S~! & factors in (12) eliminate the redundant propagator and d*k!, integration in
(11); they are included only so that the one body terms can be written in the same form

as the two body terms (see below).

The details of how to take the nonrelativistic limit of (11), and express the result in

lerms of nonrelativistic wave functions, involves three steps:

(i) Removal of the relative energy variable (kj;)o (the variable (k];)o is eliminated
by the & function). The way in which this is done is critical when it is desired to calculate
higher order relativistic effects, but these will not be discussed in this paper. All methods

give the same lowest order, leading term.

(if) Elimination of the negative energy components of the off-shell, propagating nu-

cleon, and expression of the result in terms of positive energy nucleon states only.
(1ii) Definition of the nonrelativistic wave function.

For the first step, it is sufficient to assume that, in the nonrelativistic limit, tlie dependence
of the relativistic vertex functions, I'; and I'y, on the relative energies (k13)p and (k},)0
is very slowly varying compared to the rapid dependence of the propagators S§; and S,
on these variables. In practice, this means that we will evaluate all integrals ignoring
any dependence on (kj3)g and (kj;)9 except that contained in S; and §;. Hence the
integrals over (ki2)o (and (k{;)o for the interaction current terms discussed below) can be
evaluated using the residue theorem. The second step is treated precisely by recalling that
the relativistic nucleon propagator can be decomposed into posilive and negalive energy

pieces

(13)

L omt K m u(k, Va(k,A)  v(—k,A)#(—k, A)
Stk = R = E(k) XA: ( Ek)—k  E(k)+ko )

10



where the sum is over the spin states of the nucleon, and « and v are positive and negative
energy spinors. The same physics which leads, in the nonrelativistic limit, to the assump-
tion that the (k12)o and (k{,)s dependence can be localized in the nucleon propagator, also
insures that the energy of the off-shell nucleons is always very close to the nucleon mass,
m, so that the first term in the sum is usually of order m? larger than the second term.
[Pion exchange with g coupling is an interesting exception to this general rule; in this
case the coupling of v to u states is of order m times larger than the diagonal couplings,
and negative energy states contribute to the lowest order relativistic corrections, and the
analysis becomes much more complicated. In this discussion it will be assumed that the
pion coupling is pure y5v*, and that the first term in (13) may be safely assumed to dom-
inate the diagrams. In this case, the virtual nucleons may be described by pure positive
energy states.] The factor m/E(k) is divided symmetrically between the wave functions
and the interaction (giving rise to the familiar factors of [m/E(k)]*/? which multiply each
maltrix element), and the energy denominator becomes part of the definition of the wave

function. Then, introducing the nonrelativistic wave function @,

®,(kys, K) = —z'/ d((‘;:))“ $1(k1) Sa(ks) Ti(kya, K) (14a)
N_z/d(klz)o[ mo om ]1/2 (ks )a (ks )Ti(kiz, K)
- (27\’) E(k]) E(kg) (E(kl) - klg - ZE)(E(kz) - kzu - 16)
(14b)
N m m ? ~( )E( 2 )i (kya, K) _
. [ )E(kz)] (E(k;) + B(ky) — W) (He)

where 1V is the total energy of the two nucleons, the contributions to the one body currents

hecome

11



<< mp f/ds,c(;z:;ekm (k,mK,)< ulu(k;z,km)) Di(kiz, K) (15a)

(40 (kg ki) = (2m)P600 — Kea) (K} | 5 | ko) + (206005 — ko) (K} | it | Ka) -

(156)

Hence the result (8), when applied to the two body system, generalizes to:

; foqt dsk" " n
q’ <J[r:r]' (k123k12)> = f (211_;2 { (k;Z:klz)P[tir]s(k;'mklz) - P[zt’ls(k'lzakirz)T(klzak12)

A (16a)

where

Pk 5, k1z) = (2m)26(K) — k2)pns(qym) + (27)386(K, — ki )pns(q,m2)  (16b)

T(kyy, k1z) = (2m)°6(ki, — kaz)(k1 + K2) (16¢)

are the macroscopic one body charge and kinetic energy operators. The kinetic energy
operator, T, has been expressed in the form it assumes when it is part of the kernel of the

two body integral equation.

The wave equation satisfied by the amplitude (14) can be found from the non-
relativistic reduction of the Bethe-Salpeter equation satisfied by the relativistic vertex

function. The Bethe-Salpeter equation is

. . . [ dY% . . . -
Fi(klz,fi)ﬂl (i;%z‘ L’](klz,klg;f\)S(kl)S(kz)Fi(klz,I\) . (lf)

12



Multiplying both sides of (17) by S(k}) S(k}), keeping only the positive energy parts of
(13), and assuming that the dependence of Vi on (kjz)o and (k];)o is constant compared
to the rapid variation of §;8, (equivalent to the assumption that T' is approximately

constant), gives the equation for ¢

dk;
(2m)?

(E(k;) + E(ky) = W) &(ky,, K) = Vnr(ky ki K) @(ki2, K) - (18)

where the energy difference on the LHS comes from the exact evaluation of the integral

over [(E(K,) — ko — ie)(E(ky) — kb — t€)] ™", as in Eq. (14), and
( 1 1 20

1/2
m e m T

B(K,) E(K — K}) E(ky) B(K — k1)

Var(ki, ki3 K) =

x a(ky )a(K — k)Vi(kiy, kiz; Ku(kju(K —ky)  (19)

is the non-relativistic potential corresponding to the relativistic kernel. The dependence
of this potential on the three-momenta has been given explicitly; it is specified by giving
the initial and final momenta of particle 1 and the total momenta K = k; -+ ko = ki + ki.
Note that (in general) the non-relativistic potential will be local only to lowest order, even
when the relativistic kernel is exactly local. For future reference, note that Eq. (18) can

Le rewritten

dsklz
(2m)?

(W — 2m) rb(k’w,K)zf [T(kiz,k12)+VNR(k'l,kl;K)] O(kip, K)  (20)

where the kinetic energy operator was defined in Eq. (16¢).

13



4. Interaction Currents

We now turn to the treatment of the interaction currents, derivable from the diagrams

(¢)-(e) shown in Fig. 1. The sum of these three diagrams can be written in the same form

as [Bq. (11),

< lelu //d4k1244k12
(2m)8

T (kly, K')S(kY)S(ky)TE (ky'ky'  kaka) S(k1)S(ke)Ti(kyz, K)  (21)

where JI2# is the relativistic two-nucleon interaction current. It was shown in Ref. 3 that

this interaction current could be written in the form

T (k! k) = e (3 % 72)° M[V() vl + B (22)

p'? —

where p = ky — ky, p' =k} — k1, g =p' — p, J,E,?]“ is purely transverse (q,,.f}z]“ = 0), and
V is related to the two-body BS kernel by

Vi=(r-m)V (23)

Here il is assumed that V depends only on the four-momentum transfer, which is the
case for OBE interactions. In the Appendix, the form (22} is rederived, and the explicit
form of Jr?]” obtained, for the case of one pion exchange with a a1 NN vertex of the form
fx(p*) 15v*, where fr is an (arbitrary) 7NN form factor and p? is the square of the four-
momentum carried by the pion. For now these results will be assumed, the non-relativisiic

limit of (21) will be taken, and the implications for current conservation will be studied.

14




Following the steps outlined in the previous section, the integrations over (ky2)p and

(k12)o can be quickly carried out, giving results similar to (15)

a3k d k , f
((s2m)) / f T (Kl K) (TP kL b)) Bikin, K (24a)

m m.o o m m

(I b)) = [E(kaw(k;) E(k;) Bk,

1/2
)] Ak, )kl )T (ke Ju(ks)  (245)

Since we are interested in current conservation, we will first evaluate the divergence

of this expression. Note that

Q'.uJ[ZI-‘" = 1€p (11 X 1'2)3 V(') = V(p)] (250)

Il

([1+r)vf(p)—~vr(p)(1+r)] + @+ Vi) - v:(p)(1+rf*)])-

(255)
Using the completeness relation
m
o Y [u(k,)\)ﬁ(k,A) +v(—k, \)5(—k, \) (26)
A
permits the following reduction of (24b) in the Breit frame,
1/2
78 N [ m m m m ‘ o

@) =~ | iy B B0k Fie e

5006 3 [(1+ T)Vi) = Vi) (1 +73) + (14 Vi) = Vi)t + )] ulhsJu(ka)

15



e s m m

E(k}) E(ky) E(ki) E(k,

1

| m
u(ka )5 (1 + ) (m

m

_—

() (ks ) Vi (@' Yu(ka) (

1

m

(1+7)7° (—-—E(kl —

"H_"(k:l) ' q)

D

T

~u(ky )a(ky)Vi(pju(kz) (E(

E(ks +q)

ki + q)

)
)

‘ 1 1
—pns{g,m2)Vvr(k], ki; —§Q) + Vna(k], ka; 'Z‘(I)PNS(‘I: T2)

(27b)

> (u(kz +q,N)i(ks + q, A))v“ %(1 + 73 Ju(ks
A

) (k] 0y )5(, — ) 00, Vit ot
A

3 (ulks + @, a(ks + 4, 2))2° 5 (14 77 (i)
A

(27¢)

, 1 1
— pns(g,m1)Vr(ky — q, ky; —‘“2'CI) + Vr(k], ki +q; EQ)PNs(q,ﬁ)

dS k”

(2m)®

/

(1]
Ns

]

= [VNR,P

1 1
[VNR(k;:k’fi EQ)P[;I]S kig,ki2) — Pigr]s(k

. i
k12 )V r(ky, ky; _EQ)]

'
i2»

(27d)

(27¢)

where, in going from the first to the second step, we used y%y® = 1 with one 4° rveplaced

by the identity (26) (with the v spinor terms discarded) and, in the last step, used the

one-hody charge operator from Eq. (16b). Combining this result with the result for the

one-body current, (16a), gives the nonrelativistic demonstration of current conservation

we have been seeking:

(),

(1]

<[(T + VnR) 1PN S

)
Dim = 0

i1
PNs

(7

16

) 32wt = )i = 4,2) 8 )Vilp i i)
A

)

|



where the outer { ) g brackets represent the matrix element of the wave functions, {14),
and to get zero in the final step use the wave equation (20) and the fact that in the Breit
{rame the initial and final energies of the two body system are equal. Note that the inter-
action currents extend the macroscopic conservation relation without placing restrictions

on the hadron electromagnetic form factors used in the calculation.

We emphasize that there will be relativistic corrections to (28) comming from nega-
tive energy states, which have been cousistently neglected in this development. A proper
discussion of these effects really requires a relativistic treatment, and would follow the lines
outlined in Ref. 3 and Ref. 7. Before leaving this topic, we briefly discuss one important
class of such contributions. Consider the diagrams shown in Fig. 2 a—d. Since the relativis-
tic wave equation states that the bound state vertex function is equal to the convolution
of the one-boson exchange (OBE) interaction with the bound state vertex function, as
illustrated in Fig. 2e, these diagrams are equal to twice the one body diagrams shown in
Fig. la and b, if the ezact bound state vertex function is used, and therefore make no
additional contribution to the two body current. However, in a non-relativistic approxi-
malion where the v spinor contributions to the relativistic wave equation are neglected,
the contributions to the nucleon propagators comming from the v spinor sums in Eq. (13)
are neither contained in the vertex functions nor in the one-body current defined in Eq.
(15b), and are therefore new, hitherto ignored terms which inust be added explicitly to
the two-body current. In general, the difference between the full field theoretlic current
derived from the Born terms of Fig.2 and the nonrelativistic one-body contributions is a
new irreducible two-nucleon interaction current, which can be denoted Ji (g). The total

Born

iteraction current is then

T (q) = [Thorala) = T + 7 (q) + B (g) (29a)
= TR () + TP (g) + TBH(g) . (295)

17



where JE# and Jg I are the full two body contributions from the * pion-in-flight ” diagram,

Fig. lc, and the contact diagrams, Fig. 1d—e. For y5v# coupling the new term, J§,, , does

orn?
not contribute to leading order in m™1, but it is important (comparable in size to J¢) for

vs coupling. We will not discuss these issues further.

Armed with the knowledge that the total current is conserved, both in the relativistic
and nonrelativistic cases, we are now ready to find the nonrelativistic limit of the interaction
current for use in nonrelativistic calculations. The longitudinal part, JE,]“ = J&s J;g]“,
can be reduced using the same steps used in Eq. (27). To lowest order in m ™!, it is purely
space-like, and we obtain

s (p+p')

p? — p'Z (Vnr(p') — VNr(P)) (30)

<J[f]i> = tep (11 X T2)

where use was made of the fact that the nounrelativistic limit of a one pion exchange
potential is local, and the notation Vyg(p) = Vnr(k}, k2) will be used. Specifically, the

nonrelativistic one pion exchange potential can be written in the following form:

Vnr(p) =3 01-p o2p v(p) (31a)
= —01'p 02°P (Egjﬂf)z A(-p?) (316)

where A is the full relativistic pion propagator, which includes all effects from hadronic
form factors at the # NN vertices. Specifically, if fr is the pion form factor and p? is the

square of the virtual pion four-momentum, then

A(p®) = U= (32)

2 _ 4t
p* —m;

In the nonrelativistic limit, p? = —p?, giving the familiar Yukawa poteuntial, with form
factors. However, since this derivation works for any form factor f,, A may be replaced

in applications by a phenomenological potential.
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The specific form of the transverse part of the pion current has been worked out in
the Appendix and its nonrelativistic limit is also obtained there. Its construction requires
introduction of a generalized pion current, to be used in the calculation of the diagram in
Fig. lc, and a contact current to describe the interaction at the y7 NN vertex, needed to

calculate the diagrams in Figs. 1d and e. The pion current is

i37(@) = fx(P)ihe(9) = (") (33a)

i . A—l 2y A—-I 2 y

Tha(9) = —iepjis (P ,z) — ) [Fw(qz)(z?' +p)
D P
] + . )
- 1Ry - ) ] (330)
F'rr(o) =1, (33(.‘)
and the contact current is

i& (@) = f=(2)ihe (34a)
ihe = ep%%m Fo(d)rsv” — [Feld?) - Fc(O)]'rsE%q” , (34b)
Fe(0)=1 . (34c)

In (33), i and j are the isospin lables of the incoming and outgoing pion. respectively,
F.(g*) is the form factor of the pion, and Jﬁ:(q) is the reduced current which must satisly
the WT identity. The current includes the full pion propagator, A(p®), and the a NN
form factor, fx, discussed above. In {34), the index j is the isospin of the pion, which is
outgoing, T is the isospin operator of the nucleon, and a form factor for the contact process

Fe(g?) has been introduced. All form factors can be chosen independently from each other
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as in Ref. 3. Note that the reduced pion current (33b) satisfies the WT identity for a pion
with the modified propagator A:

Qihy = —iepejis [A7(P?) — A7 (p?)] (35)

while the divergence of the reduced contact current is not changed compared to the case

without a form factor.

Using the operators (33) and (34), it is shown in the Appendix that the transverse

part of the two-body current becomes:

<J[72‘]i> = Jie, (11 X 1'2)3

g . 1 . 1
< Fote (7w [a; — o -q;‘—z] o(p') + 72 - P [a; —oy q{}] v(p))

(0’ +p)' o
prz _ pz - q2

} (F«(qz)al -p'oz - ple(p') —v(p)} + :il,; [Vr(p') — VNR(p)]):' (36)

In using this current in electron scattering calculations, the terms proportional to ' can
be dropped, because they give zero when contracted with the conserved electron current.
Iu this case the result simplifies, and the longitudinal part, (30), is cancelled by an identical
term in the transverse part, giving two contributions similar to the standard pion contact

and pion current terms familiar from previous non-relativistic calculations

<J[2]f> — 3i€p ('T]_ x T2)3 FC(qZ)(O_l . p' 0—;‘1;([)') + Ty » ])U;'l'{])))

(p’ +p)

+ Fr(g*)or - p'oy -p('v(P’) - ‘L'(P)) o2 pr| (37)
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To summarize: the complete current J#(q) = JU# 4 JI2# of the interacting two-
nucleon system of Fig. 1 is composed of two parts; the nucleon current, defined relativisti-
cally in Eq. (5), and nonrelativistically in Eq. (15b), and the two-body interaction current
given relativistically in Eq. (22), and nonrelativistically in Eq. (37) and explicitly con-
structed {from its component parts, 7. (33) and jo (34), in the Appendix. It is conserved,

ie.,

d*k; dsk
o (7 = [ [ SR 010 K (g by ki) Bz )
=0 , (38)

even though the electromagnetic form factors in the various processes of Fig. 1 as well as
the hadronic 7 NN form factor are chosen independently. This result is due to the WT
identities, Eqs.(6) and (33), and the way in which the elementary currents (5), (33) and

(34) are defined.

This result is in conflict with Ref. 8. In this reference a pion current of the same
form as (37) is used (their Eq. {5) with p and p' replaced by —k,; and k), but both terms
are multiplied by a common form factor, Gg, which they state is required by current
conservation. While such a choice is permitted by our result, it is certainly not required.
In particular, since the pion form factor is known to fall more slowly than Gg, the cloice
of Gg would not seein to be a choice most consistent with the meson exchange model.
Furthermore, the contact current should more properly go like Fo or Fy. which are also
much larger than G'g. Thus the choice made in Ref. 8 can be expected o underestimate

the effect of interaction currents (see the discussion in Section 6 below).
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5. Microscopic Current Conservation

We saw in Secs. 2-4 how the non-relativistic reduction of the relativistic relations
leads naturally to the appearance of current conservation in the macroscopic form, Eq.

(28). In non-relativistic physics, current conservation is usually expressed as a microscopic

relation:

o (((G0+32))) = ([B,RW]),, = o (39)

where p[ ]( ) is the local charge operator obtained by substituting the charge density
obtained from Eq. (la) into (165). In this section we show that the conservation relations
may also be re-expressed in such a microscopic form, and discuss the significance of this

result.

To show this, first add and subtract the following interaction term:

Jo = wAﬁxa]qLﬂw)—ﬂW@wmwm1- (40)

Note that this current is acceptable because it is regular at ¢> = 0. Next, replace the
one body current J,[\l,l"‘(q) of Eq. (15b) with the one body current J}\}]”(q), obtained from
(15h) by substituting ji(g) of Eq. (1) for ji.(g) of Eq. (5), and regard the difference,
J[]]“( ) — J}\l,]“(q), as a contribution to the interaction current. With these changes, the

interaction current can now be written

r_ u "
TR = de, [ry x ° Fl(q?)———(;z _1;)2 Vi) = Vie) - IZ* + [T — TR @)] + IE

(41)
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where the new transverse part of the current is

=t (2= ) )1V Vo) +

Now, the new longitudinal pieces in Eq. (41) depend on ¢* only, and hence will be zero
when contracted with the electron current {or, in the case of photoproduction processes,
with the polarization vector of the real photon). If these terms are discarded, the sum
of the new one body and two body interaction currents satisfies the microscopic relation

(39}

In sumimary, we are able to convert the statement of current conservation from a
macroscopic form to a microscopic form by adding and subtracting the term (40), and
then dropping some terms proportional to g*. These latter terms make no contribution to
any physical interaction, and do not change the final result for the interaction current, but
they are important in showing us why current conservation alone will place no constraints
on the form factors used in each term in the current. If the structure of these terms
is artifically constrained (by assuming they must be zero, for example) we may be lead
lo conclude that current conservation requires certain restrictions which, in fact, are not
required. It is the freedom to introduce such terms, and their natural appearance in the
construction of currents which satisfy the WT identities, which relaxes the commonly

assumed restrictions on the choice of form factors.

6. Numerical Sensitivity

In non-relativistic calculations it is often customary to replace the Dirac and Pauli

form {actors of the nucleon by the Sachs form factors, i.e.,

o

Cple*7°) = Filg",7°) - 5 (gt ) (43a)
Cul(e, ™) = Fi(e",7°) + Bala®,7%) (43h)
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which are interpreted as experimental quantities of order (1/m)?. These are the appropri-
ate form factors to use in the one body (nucleon) currents. However, as we have empha-

9,10

sized, the experimental pion form factor may be used in the pion exchange processes,

and the axial form factor !

1

FC(qz) = (1 _ qz/mi)z

(44)

may be used for the contact process, without violating gauge tnvarience. To study the nu-
merical importance of these replacements, the pion form factor of Gari and Kriimpelmann??

and form factor (44) with m4 = 1.09 GeV will be used.

Figures 3 and 4 give some indication of how the theoretical conclusions of this paper
can be expected to influence practical numerical results. In Fig. 3, the form factors £,
Jg, F., and F are compared. For the nucleon form factors, the parametrization of
Blatnik and Zovko!? is used. Note that only G is significantly different from the others
over the momentum range of relevance to the three body form factors. Hence, the use of

F, and F¢ in place of F} will not introduce large changes, but the replacement of G g by

F, or F¢ could introduce large effects.

The analysis of the two-body exchange currents of Sec.4 has bearing on the trinu-
cleon magnetic properties only. Predictions with the new choice of operators in Sec.4 are
compared in Fig. 4 with the results of Ref. 13. In this reference, the electromagnetic form
{factors of the individual nuclear constituents, i.e., the ones needed for the single-baryon
charge and for the two-baryon spatial meson-exchange currents required by current con-
servation, were equated to the Sachs form factor G} (given by the short dasled line in
Figure 4). Substituting the realistic pion form factor for G in the pion exchange term
(dotied line) has very little effect, even though the pion form factor dilters significantly
from G} in this momentum transfer range (see Fig. 3). This is a reflection of the fact that
the pion exchange term is not very important. However, substituting Fe for G} in the
pion contact interaction (the long dashed line) has a significant eflect, a reflection of the

previously known fact that the contact term makes iinportant contributions to the three
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body form factors. Finally, the solid curve, which shows the result when FY is used for
all of the pion and rho exchange currents, shows a further sensitivity to the choice of rho
form factors, which we have not investigated in this paper, but which could be studied

using the methods we have developed.

6. Conclusions

In this paper we show how to construct two-body interaction currents for non-
rvelativistic systems. The interaction currents insure that all two body matrix elements
of the total curreni are conserved, even when different electromagnetic form factors are
used for the nucleon, pion, and contact terms. While this paper presents detailed formulae
only for pion exchange currents derivable from the pseudo-vector 7NN coupling, results

{for olher exchange currents can be derived in a similar fashion.

The currents are obtained by taking the non-relativistic limit of the relativistic cur-
rents and matrix elements previously derived in Ref. 3. The non-relativistic limit is
taken in the generalized Breit frame, where the energy component of the relativistic four-
momentun transfer, g, is zero. This frame is preferred because only in this frame is the
tourqnmneutuxn transfer of relativisiic physics equal to the three-momentum transfer of
non-relativistic physics, making it possible to make a detailed correspondence between
the two. The derivation leads to several new observations about the relationship between

relativistic and non-relativistic theories:

(i) The Ward-Takahashi identity for the nucleon, which plays a central role in the
derivation of the relativistic interaction current, reduces to the statement that the diver-
gence of the one body current operator is equal, in the Breit frame, to the commutator of

the kinetic energy operator with the macroscopic charge operator [Eq¢s. (8} and {16))].

(ii) The divergence of the interaction current reduces, in the Breit frame, to an equa-
tion relating the divergence of the interaction current to the commutator of the potential

energy operator with the macroscopic charge operator [Eq. (27)].
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(ili) Combining items (i) and (ii) above shows that the divergence of the total current
[which is the sum of the one body currents and the interaciion (two body) currents] is equal
to the commutator of the hamiltonian with the macroscopic charge operator. Since the

matrix element of this commutator is zero, the total current is conserved.

(iv) The appearance of the macroscopic charge operator in the commutation relations
referred to in items (i) - (iii) above [which we have called “macroscopic” relations|, instead
of the usual charge density [called “microscopic” relations|, appears to be a natural con-
sequence of the relativistic structure of the currents, and shows why the choice of nucleon

structure plays no role in the statement of current conservation.

A major conclusion of this work, which follows particularly from the last item above,
is that the form factor used for the contact term may be either Gg, F}, or, more generally,
I'¢, and that this choice is neither restricted by the requirements of current conservation,
nor by whether one wishes to use Gg or F; for the single nucleon form factor. For example,
if the currents are properly constructed, one may use F; for the contact form factor and
(g for the single nucleon charge operator (which may be preferred by the data). It has
been known for some time that the choice of this form factor can be nuinerically significant,
and this fact is demonstrated again in Fig. 4, which shows the sensitivity of the three-
nucleon magnetic form factors to this choice. These observations show that meson theories
have less predictive power than comuonly assumed, and suggest that the contact form
factor, at least within the context of non-relativistic calculations, can be chosen to fit
data. We conclude that the choice made in Ref. 8 to use Gg for the one body {orm factors
in the interaction current is not a unique choice forced by the requirements of current

conservation, but, in view of the success of the fits, was a good cheoice for that calculaiion.
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Appendix: Form of the Pion Interaction Current

In this Appendix we show that the interaction current constructed {from Figs. lc—e
can be written in the form given in Eq. (22), and obtain the exact form for the transverse
tern, J?lp’. The construction uses the elementary pion and contact currents given in Eqgs.
(33) and (34), and is thus valid for v5v* pion coupling with an arbitrary form factor f.(p?),
where p? is the four momentum squared of the virtual pion. After determining the exact

relativistic form of J¥]“, we take the non-relativistic limit and obtain Eq. (36).

Using the Feynman rules, the current in Fig. 1c¢ describing the interaction with the

“pion-in-flight” is

o 2
SR = —1€5i3T Ty (éi_y,) [#vs], 1B v5), A(P*)A(P")

[Fw(qZ)A_I(P;,j :;—1(”2) (P” - P'qzq“) + (A7 (p?) - AT(PY) Z—Z](A.la)

= —i{r x T2]3 (%)2 ['ys)y [ 7s), [_P“ (A(pm) - A(pZ))

p!2 — pz

(A4.15)

- (Rgt) 1) (P2 - ) AP%) = Al

q2

where P = p' + p and all other terms were defined in Sec. 4. Similarily, the two diagrams

1d and le are:
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T =it mf ()] {[ms]z 86" (1 3+ (Fota) - 1) (7 = £ )

qz

q

F 17 1), AG™) (h“ 18] + (Fe(g?) - 1) (7" - ﬂ—) 7)} (4.20)
i xnl () { ([;f 7ol 14 751, AG2) + 17 5], 14 78], A(p'z)) =
+[# 7s], A(p?) ([7“ vsi — [4vs] % +(Folg?) - 1) ('r" - g;—ﬂ) 75)1

#1823 86) (17 78]~ Ure] e + (Pota?) - 1) (- L2°) 7)}

(A.2b)
Adding {A.1) and (A.2) together gives a result of the following form
(20 _ s( 9\ PE 12y _ A(p?
I =i () A F sl [l (A67) - AGY)
+ [Brsly [ vl AP?) + [B ¥s)y [4 7], A(P'z)}
+ {transverse terms} (4.3)

where the transverse teris are the last terms in the expressions (4.1h) aud (.4.2H). Sub-
stituling ¢ = p’ — p into the longitudinal terms in (4.3), and defining 17 of Eq. (23)

by

V)= (52) () (15l AGY) (44)

Zm
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gives Eq. (22), with

"
J[I?lﬂz'l'[‘?"l)('rz]a{(Pp—qu )R

() eta®) [ 046%) (1t = o ) + 2l 608 (072~ 1 5 )| }
(45)

and

- (HP) = Vie) NERGY AG?) - AG?)
R=- ( P2 — p? ) + Fr(q )(2711) [£'vs], [#7s], TR (A.6)

The next task is to evaluate the nonrelativistic limit of the interaction current in the

Breit frame:. To this end we use the following matrix elements:

a(k}) [#'vs], u(ki) = ~01-p’
W(ky) (B 7s), ulkz) = —o2-p

(k1) [7'7s], w(ke) = o3

U
a(ky) [v'ys], ulke) = o (A7)
and note that, in the Breit frame, ¢ = —q?, and ¢* — ¢' (where p = ¢ = 3). With these

identities, the non-relativistic limit of (A.5) becomes Eq. (36).
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

FIGURE CAPTIONS

The five diagrams which give, for the BS theory in ladder approximation, a
gauge invariant calculation of the electromagnetic interactions of two nucleons.
(a) and (b) are one body terms, (c) the meson exchange process, and (d) and

(e) are contact contributions.

Diagrams (a) - (d), sometimes referred to as Born terms, give negative energy
corrections, important in 45 theory. The processes (a) — (d) are included in the
one body diagrams shown in Fig. la-b, if these diagrams are evaluated exactly
using a vertex function which is an exact solution of the bound state equation
shown in (e). However, if negative energy contributions are neglected in the
evaluation of the one body currents, then these contributions can be obtained
approximately from the negative energy contributions to the virtual nucleon

propagator (labeled N) in the Born diagrams.

Form factors employed in the exchange-current operators as function of momen-
tum transfer. The isovector combination 2F} (Q?) = Fy(Q%,1/2)-F(Q?%,-1/2)
of nucleon form factors in the parametrization of Ref. 12 is shown in the solid
curve, the isovector Sachs form factor G in the same parameterization is the
dashed curve, the pion form factor is the dot-dashed curve, and the axial form

factor of the nucleon is the dotted curve.

Nonrelativistic calculations of the *He magnetic form factor, using different
choices of elementary form factors for the pion exchange, pion contact term,
and rho exchange terms. The short dashed line (with the largest secondary
maximum) is the result of Ref. 13, which uses the common forn factor G'L(Q?)
for all exchange currents. The dotted curve shows the result when the realistic
pion form factor, Fy, is substituted for G} in the pion exchange term, the long

dashed curve when Fg is substituted for G} in the contact term, and the dot-

dashed curve is the calculation when, in the respective terms, both F, and F¢
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are substituted for GY. For comparison, the solid line shows the result when
FY(Q?) is used in place of GL(Q?) for all three form factors. All calculations
are based on the Paris potential with added single A-isobar excitation, i.e., on
force model A2 of Ref. 13. All parameters in the exchange-current operators,
i.e., the pion and rho cut-off masses A, are taken over unchanged from Ref. 13.

The experimental data are taken from Ref. 14.
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